Reddit Reddit reviews Discrete Mathematics, 2nd Edition

We found 4 Reddit comments about Discrete Mathematics, 2nd Edition. Here are the top ones, ranked by their Reddit score.

Computers & Technology
Books
Computer Science
AI & Machine Learning
Machine Theory
Discrete Mathematics, 2nd Edition
Oxford University Press USA
Check price on Amazon

4 Reddit comments about Discrete Mathematics, 2nd Edition:

u/Lhopital_rules · 64 pointsr/AskScienceDiscussion

Here's my rough list of textbook recommendations. There are a ton of Dover paperbacks that I didn't put on here, since they're not as widely used, but they are really great and really cheap.

Amazon search for Dover Books on mathematics

There's also this great list of undergraduate books in math that has become sort of famous: https://www.ocf.berkeley.edu/~abhishek/chicmath.htm

Pre-Calculus / Problem-Solving

u/PunsForHire · 5 pointsr/math

It sounds like you might perhaps want a background in Number Theory and/or Basic Logic and/or Set Theory. The thing about math is that there is a lot...

My advice for a text that might serve you well is N.L. Biggs' Discrete Mathematics (http://www.amazon.com/Discrete-Mathematics-Norman-L-Biggs/dp/0198507178). If you are at all interested in computer science, this is also a great book for that because it introduces some of the mathematical rigor behind it. Some people have a smidgen of difficulty with this text because it doesn't give some names to proofs/algorithms that maybe you've heard whispered (e.g. Dijkstra's shortest path and Prim's minimal spanning tree). A text that I tend to think is on par with Biggs', but many think is vastly superior (I love both, but for different reasons) that covers some (most) of the same topics is Eccles' An Introduction to Mathematical Reasoning (http://www.amazon.com/Introduction-Mathematical-Reasoning-Peter-Eccles/dp/0521597188/ref=pd_sim_b_4?ie=UTF8&refRID=1BB6VKRP59S2420M132F). This book has a wonderful focus on building from the ground up and emphasizes clearly worded and mathematically rigorous proofs.

You seem genuinely interested in mathematics, but I do want to warn you about some more ahem esoteric (read: improperly worded, perhaps?) problems that ask such things as why 1 is greater than 0. The mathematics here is largely armchair - lacking any fundamental logic. There would be no issue with redefining a set of bases such that "0" is greater than "1". However, if you want to have rationale of the concept of things being greater than another, that's more like number theory. You can learn the 10 axioms of natural numbers and then build from there.

Both of the books I mentioned will cover stuff like this. For example, they both (unless I'm not remembering correctly) delve into Euclid's proof of infinite primes, something which may interest you.

Briefly (and not so rigorously), assume that the number of primes, p1, p2, p3, ..., pN, is finite. Then there exists a number P which is the product of these primes. Based on the axioms of natural numbers, since all primes p1,p2,...,pN are natural numbers P is a natural number and so is P+1. Consider S = P+1. If S is prime than our list is incomplete, assume S isn't prime. Then some number in our list, say pI, divides S because any natural number can be written as the product of primes. pI must also divide P because P equals the sum of all primes. Therefore if pI divides S and pI divides P, then pI divides S-P = 1. That's a contradiction because no prime evenly divides 1.

Stuff like this is super cool, super simple, and super beautiful and you absolutely can learn it. These two books would be a great place to start.

u/BertRenolds · 1 pointr/textbooks

that's kinda ironic.. was about to start my search

Discrete Mathematics
by Norman L. Biggs 2nd.


https://www.amazon.ca/Discrete-Mathematics-Norman-L-Biggs/dp/0198507178