Reddit Reddit reviews Linear Algebra (Dover Books on Mathematics)

We found 22 Reddit comments about Linear Algebra (Dover Books on Mathematics). Here are the top ones, ranked by their Reddit score.

Science & Math
Books
Mathematics
Algebra
Linear Algebra
Pure Mathematics
Linear Algebra (Dover Books on Mathematics)
Check price on Amazon

22 Reddit comments about Linear Algebra (Dover Books on Mathematics):

u/zitterbewegung · 42 pointsr/math

The rate of your learning is defined by your determination. If you don't give up then you will learn the material.

Look at the book that is required and only learn what you need in the class. Don't learn everything in the book either. Just learn what you need to do well and refer to the books when you get confused.

Note don't try to learn everything that's below. Only use it to learn what you actually need. This can be overwhelming at first but just set aside a set time to study this.
EDIT I added more books and courses.
OCW
http://ocw.mit.edu/courses/mathematics/18-01sc-single-variable-calculus-fall-2010/
http://ocw.mit.edu/courses/mathematics/18-02-multivariable-calculus-fall-2007/index.htm
http://ocw.mit.edu/courses/mathematics/18-03-differential-equations-spring-2010/
http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/
Helpful books
http://www.amazon.com/Mathematical-Proofs-Transition-Advanced-Mathematics/dp/0321390539/ref=sr_1_3?s=books&ie=UTF8&qid=1312542911&sr=1-3
http://www.amazon.com/Understanding-Probability-Chance-Rules-Everyday/dp/0521540364
http://www.amazon.com/gp/product/048663518X/ref=pd_lpo_k2_dp_sr_1?pf_rd_p=486539851&pf_rd_s=lpo-top-stripe-1&pf_rd_t=201&pf_rd_i=0155510053&pf_rd_m=ATVPDKIKX0DER&pf_rd_r=0YXJR9EVHCH9PCBDN372

Khan Academy
http://khan-academy.appspot.com/#calculus
http://www.youtube.com/user/keithpeterb#p/u/19/dS2p_APpcnI
http://khan-academy.appspot.com/video/probability--part-1?playlist=Old%20Algebra
http://www.youtube.com/user/keithpeterb#p/u/19/dS2p_APpcnI
http://khan-academy.appspot.com/video/linear-algebra--introduction-to-vectors?playlist=Linear%20Algebra

EDIT: I knew nothing about topological quantum computation about 1.5 years ago but then I took a independent study in college and I was assigned 1-3 papers a week to read. Eventually I got it a few months ago. What got me through it was not giving up...

u/gtani · 15 pointsr/math

if you want determinants, Shilov's is supposed to be "Determinants done right" I wouldn't recommend the other Dover LA book by Stoll

http://www.amazon.com/Linear-Algebra-Dover-Books-Mathematics/product-reviews/048663518X/

-----------

Anyway: Free!

http://www.math.ucdavis.edu/~anne/linear_algebra/

http://www.math.ucdavis.edu/~linear/linear.pdf

http://www.cs.cornell.edu/courses/cs485/2006sp/LinAlg_Complete.pdf (Dawkins notes that were recently pulled off lamar.edu site, gentle intro like Anton's)

http://joshua.smcvt.edu/linearalgebra/

http://www.ee.ucla.edu/~vandenbe/103/reader.pdf

http://www.math.brown.edu/%7Etreil/papers/LADW/LADW.pdf

https://math.byu.edu/~klkuttle/Linearalgebra.pdf

---------

Or, google "positive definite matrix" or "hermitian" or "hessian" or some term like that and it will show you lecture notes from dozens of universities after the inevitable wikipedia and Wolfram hits

u/catsails · 12 pointsr/Physics

I don't say this to be discouraging: Most people don't really have any idea what doing Physics at a high level looks like. I decided in High School that I wanted to be a physicist, and as luck would have it I'm a graduate student and I still enjoy it, but truth be told, the exposure you have in High School doesn't really prepare you for the reality. All that to say: There's no reason to decide at thirteen years old that you need a PhD in Physics! Maybe once you learn math beyond trig you'll decide it isn't for you, or maybe you'll love math and want to switch to a math degree.

All right, now that that's out of the way... You said you're learning trig, that's good, you need it. You also need some basic algebra skills. Then try to teach yourself basic calculus (limits, derivatives, integrals). Then you want to learn Linear Algebra and at least Ordinary Differential Equations.

You can also do some basic physics reading before you've learned the essentials. I really like George Gamow's books for this - he was a very well know and important physicist who also happened to write very accessible books that are very much for lay people but that also don't shy away completely from the math. I really enjoyed this one in particular.

For mathematics, I love Dover books - they're cheap AND good. Shilov, I've found, is clear and readable. This might not be introductory level, but it's inexpensive and let's you see what you're getting yourself into.

Last bit of advice for Physics is what one of my old high school teachers used to say - draw, label, and you can't go wrong. It's still mostly true.

u/linehan23 · 10 pointsr/aerospace

/u/another_user_name posted this list a while back. Actual aerospace textbooks are towards the bottom but you'll need a working knowledge of the prereqs first.

Non-core/Pre-reqs:


Mathematics:


Calculus.


1-4) Calculus, Stewart -- This is a very common book and I felt it was ok, but there's mixed opinions about it. Try to get a cheap, used copy.

1-4) Calculus, A New Horizon, Anton -- This is highly valued by many people, but I haven't read it.

1-4) Essential Calculus With Applications, Silverman -- Dover book.

More discussion in this reddit thread.

Linear Algebra


3) Linear Algebra and Its Applications,Lay -- I had this one in school. I think it was decent.

3) Linear Algebra, Shilov -- Dover book.

Differential Equations


4) An Introduction to Ordinary Differential Equations, Coddington -- Dover book, highly reviewed on Amazon.

G) Partial Differential Equations, Evans

G) Partial Differential Equations For Scientists and Engineers, Farlow

More discussion here.

Numerical Analysis


5) Numerical Analysis, Burden and Faires


Chemistry:


  1. General Chemistry, Pauling is a good, low cost choice. I'm not sure what we used in school.

    Physics:


    2-4) Physics, Cutnel -- This was highly recommended, but I've not read it.

    Programming:


    Introductory Programming


    Programming is becoming unavoidable as an engineering skill. I think Python is a strong introductory language that's got a lot of uses in industry.

  2. Learning Python, Lutz

  3. Learn Python the Hard Way, Shaw -- Gaining popularity, also free online.

    Core Curriculum:


    Introduction:


  4. Introduction to Flight, Anderson

    Aerodynamics:


  5. Introduction to Fluid Mechanics, Fox, Pritchard McDonald

  6. Fundamentals of Aerodynamics, Anderson

  7. Theory of Wing Sections, Abbot and von Doenhoff -- Dover book, but very good for what it is.

  8. Aerodynamics for Engineers, Bertin and Cummings -- Didn't use this as the text (used Anderson instead) but it's got more on stuff like Vortex Lattice Methods.

  9. Modern Compressible Flow: With Historical Perspective, Anderson

  10. Computational Fluid Dynamics, Anderson

    Thermodynamics, Heat transfer and Propulsion:


  11. Introduction to Thermodynamics and Heat Transfer, Cengel

  12. Mechanics and Thermodynamics of Propulsion, Hill and Peterson

    Flight Mechanics, Stability and Control


    5+) Flight Stability and Automatic Control, Nelson

    5+)[Performance, Stability, Dynamics, and Control of Airplanes, Second Edition](http://www.amazon.com/Performance-Stability-Dynamics-Airplanes-Education/dp/1563475839/ref=sr_1_1?ie=UTF8&qid=1315534435&sr=8-1, Pamadi) -- I gather this is better than Nelson

  13. Airplane Aerodynamics and Performance, Roskam and Lan

    Engineering Mechanics and Structures:


    3-4) Engineering Mechanics: Statics and Dynamics, Hibbeler

  14. Mechanics of Materials, Hibbeler

  15. Mechanical Vibrations, Rao

  16. Practical Stress Analysis for Design Engineers: Design & Analysis of Aerospace Vehicle Structures, Flabel

    6-8) Analysis and Design of Flight Vehicle Structures, Bruhn -- A good reference, never really used it as a text.

  17. An Introduction to the Finite Element Method, Reddy

    G) Introduction to the Mechanics of a Continuous Medium, Malvern

    G) Fracture Mechanics, Anderson

    G) Mechanics of Composite Materials, Jones

    Electrical Engineering


  18. Electrical Engineering Principles and Applications, Hambley

    Design and Optimization


  19. Fundamentals of Aircraft and Airship Design, Nicolai and Carinchner

  20. Aircraft Design: A Conceptual Approach, Raymer

  21. Engineering Optimization: Theory and Practice, Rao

    Space Systems


  22. Fundamentals of Astrodynamics and Applications, Vallado

  23. Introduction to Space Dynamics, Thomson -- Dover book

  24. Orbital Mechanics, Prussing and Conway

  25. Fundamentals of Astrodynamics, Bate, Mueller and White

  26. Space Mission Analysis and Design, Wertz and Larson
u/Banach-Tarski · 5 pointsr/Physics

Learn math first. Physics is essentially applied math with experiments. Start with Calculus then Linear Algebra then Real Analysis then Complex Analysis then Ordinary Differential Equations then Partial Differential Equations then Functional Analysis. Also, if you want to pursue high energy physics and/or cosmology, Differential Geometry is also essential. Make sure you do (almost) all the exercises in every chapter. Don't just skim and memorize.

This is a lot of math to learn, but if you are determined enough you can probably master Calculus to Real Analysis, and that will give you a big head start and a deeper understanding of university-level physics.

u/xrelaht · 5 pointsr/AskPhysics

This should keep you busy, but I can suggest books in other areas if you want.

Math books:
Algebra: http://www.amazon.com/Algebra-I-M-Gelfand/dp/0817636773/ref=sr_1_1?ie=UTF8&s=books&qid=1251516690&sr=8
Calc: http://www.amazon.com/Calculus-4th-Michael-Spivak/dp/0914098918/ref=sr_1_1?s=books&ie=UTF8&qid=1356152827&sr=1-1&keywords=spivak+calculus
Calc: http://www.amazon.com/Linear-Algebra-Dover-Books-Mathematics/dp/048663518X
Linear algebra: http://www.amazon.com/Linear-Algebra-Modern-Introduction-CD-ROM/dp/0534998453/ref=sr_1_4?ie=UTF8&s=books&qid=1255703167&sr=8-4
Linear algebra: http://www.amazon.com/Linear-Algebra-Dover-Mathematics-ebook/dp/B00A73IXRC/ref=zg_bs_158739011_2

Beginning physics:
http://www.amazon.com/Feynman-Lectures-Physics-boxed-set/dp/0465023827

Advanced stuff, if you make it through the beginning books:
E&M: http://www.amazon.com/Introduction-Electrodynamics-Edition-David-Griffiths/dp/0321856562/ref=sr_1_1?ie=UTF8&qid=1375653392&sr=8-1&keywords=griffiths+electrodynamics
Mechanics: http://www.amazon.com/Classical-Dynamics-Particles-Systems-Thornton/dp/0534408966/ref=sr_1_1?ie=UTF8&qid=1375653415&sr=8-1&keywords=marion+thornton
Quantum: http://www.amazon.com/Principles-Quantum-Mechanics-2nd-Edition/dp/0306447908/ref=sr_1_1?ie=UTF8&qid=1375653438&sr=8-1&keywords=shankar

Cosmology -- these are both low level and low math, and you can probably handle them now:
http://www.amazon.com/Spacetime-Physics-Edwin-F-Taylor/dp/0716723271
http://www.amazon.com/The-First-Three-Minutes-Universe/dp/0465024378/ref=sr_1_1?ie=UTF8&qid=1356155850&sr=8-1&keywords=the+first+three+minutes

u/mathwanker · 5 pointsr/math

These were the most enlightening for me on their subjects:

u/quantumcoffeemug · 4 pointsr/math

The course I took as an undergraduate used Friedberg, Insel and Spence. I remember liking it fine, but it's insultingly expensive. Find it in a library or get a used copy if you can. If you're looking for a bargain, it can't hurt to try Shilov. He's Russian, so the book is very terse, but covers a lot of ground.

u/TheAlgorithmist99 · 4 pointsr/math

This is a compilation of what I gathered from reading on the internet about self-learning higher maths, I haven't come close to reading all this books or watching all this lectures, still I hope it helps you.

General Stuff:
The books here deal with large parts of mathematics and are good to guide you through it all, but I recommend supplementing them with other books.

  1. Mathematics: A very Short Introduction : A very good book, but also very short book about mathematics by Timothy Gowers, a Field medalist and overall awesome guy, gives you a feelling for what math is all about.

  2. Concepts of Modern Mathematics: A really interesting book by Ian Stewart, it has more topics than the last book, it is also bigger though less formal than Gower's book. A gem.

  3. What is Mathematics?: A classic that has aged well, it's more textbook like compared to the others, which is good because the best way to learn mathematics is by doing it. Read it.

  4. An Infinitely Large Napkin: This is the most modern book in this list, it delves into a huge number of areas in mathematics and I don't think it should be read as a standalone, rather it should guide you through your studies.

  5. The Princeton Companion to Mathematics: A humongous book detailing many areas of mathematics, its history and some interesting essays. Another book that should be read through your life.

  6. Mathematical Discussions: Gowers taking a look at many interesting points along some mathematical fields.

  7. Technion Linear Algebra Course - The first 14 lectures: Gets you wet in a few branches of maths.

    Linear Algebra: An extremelly versatile branch of Mathematics that can be applied to almost anything, also the first "real math" class in most universities.

  8. Linear Algebra Done Right: A pretty nice book to learn from, not as computational heavy as other Linear Algebra texts.

  9. Linear Algebra: A book with a rather different approach compared to LADR, if you have time it would be interesting to use both. Also it delves into more topics than LADR.

  10. Calculus Vol II : Apostols' beautiful book, deals with a lot of lin algebra and complements the other 2 books by having many exercises. Also it doubles as a advanced calculus book.

  11. Khan Academy: Has a nice beginning LinAlg course.

  12. Technion Linear Algebra Course: A really good linear algebra course, teaches it in a marvelous mathy way, instead of the engineering-driven things you find online.

  13. 3Blue1Brown's Essence of Linear Algebra: Extra material, useful to get more intuition, beautifully done.

    Calculus: The first mathematics course in most Colleges, deals with how functions change and has many applications, besides it's a doorway to Analysis.

  14. Calculus: Tom Apostol's Calculus is a rigor-heavy book with an unorthodox order of topics and many exercises, so it is a baptism by fire. Really worth it if you have the time and energy to finish. It covers single variable and some multi-variable.

  15. Calculus: Spivak's Calculus is also rigor-heavy by Calculus books standards, also worth it.

  16. Calculus Vol II : Apostols' beautiful book, deals with many topics, finishing up the multivariable part, teaching a bunch of linalg and adding probability to the mix in the end.

  17. MIT OCW: Many good lectures, including one course on single variable and another in multivariable calculus.

    Real Analysis: More formalized calculus and math in general, one of the building blocks of modern mathematics.

  18. Principle of Mathematical Analysis: Rudin's classic, still used by many. Has pretty much everything you will need to dive in.

  19. Analysis I and Analysis II: Two marvelous books by Terence Tao, more problem-solving oriented.

  20. Harvey Mudd's Analysis lectures: Some of the few lectures on Real Analysis you can find online.

    Abstract Algebra: One of the most important, and in my opinion fun, subjects in mathematics. Deals with algebraic structures, which are roughly sets with operations and properties of this operations.

  21. Abstract Algebra: Dummit and Foote's book, recommended by many and used in lots of courses, is pretty much an encyclopedia, containing many facts and theorems about structures.

  22. Harvard's Abstract Algebra Course: A great course on Abstract Algebra that uses D&F as its textbook, really worth your time.

  23. Algebra: Chapter 0: I haven't used this book yet, though from what I gathered it is both a category theory book and an Algebra book, or rather it is a very different way of teaching Algebra. Many say it's worth it, others (half-jokingly I guess?) accuse it of being abstract nonsense. Probably better used after learning from the D&F and Harvard's course.

    There are many other beautiful fields in math full of online resources, like Number Theory and Combinatorics, that I would like to put recommendations here, but it is quite late where I live and I learned those in weirder ways (through olympiad classes and problems), so I don't think I can help you with them, still you should do some research on this sub to get good recommendations on this topics and use the General books as guides.
u/talkloud · 3 pointsr/math

Shilov gives a rigorous, determinant-heavy treatment of LA in his $10 book. All the nice properties of determinants are verified in the first chapter

u/dp01n0m1903 · 3 pointsr/math

Perhaps you might find Shilov's Linear Algebra or Roman's Advanced Linear Algebra to be useful. Both of them treat bilinear and quadratic forms.

I think Shilov does actually discuss Gram-Schmidt orthonormalization, but he doesn't call it that, and it seems to be spread over several sections in chapters 7 and 8. Roman might be better for that. Anyway, you can peruse both of these at libgen.

u/G-Brain · 3 pointsr/math

If you'd like an alternative to calculus, try learning linear and/or abstract algebra. Shilov's Linear Algebra is a good book on linear algebra. Linear algebra comes up everywhere, so it's definitely worth learning. The abstractions involved such as fields should also be a good introduction to higher mathematics. For even more abstraction, try A Book of Abstract Algebra by Charles Pinter which is one of my favorite books.

While calculus is also fundamental, personally I find linear and abstract algebra to be much more enjoyable subjects.

u/misplaced_my_pants · 3 pointsr/math

Some possibilities:

Calc I & II: Spivak's Calculus

Calc III and a bit of linear algebra: Hubbard & Hubbard's Vector Calculus

LA: Axler or Shilov or both

ODE: Morris Tanenbaum


Discrete/Combinatorics/etc.: Knuth's Concrete Mathematics

For book suggestions beyond concerning Analysis, Algebra, and Topology, the search box will turn up a ton of previous conversations.

u/antisyzygy · 2 pointsr/math

There are some recommendations on Amazon :

>I find it ironic that my two favourite Linear Algebra texts are this book and the Axler, for they are exact opposites: Axler shuns determinants, and Shilov starts with them and builds much of his theory off them. However, there is no book I have found that has such a deep and clear exposition of determinants. The first chapter alone makes this book worth buying.

http://www.amazon.com/Linear-Algebra-Dover-Books-Mathematics/dp/048663518X/ref=sr_1_1?s=books&ie=UTF8&qid=1346872221&sr=1-1&keywords=linear+algebra

I would suggest this book for more advanced reading : http://www.amazon.com/gp/product/0415267994/ref=cm_cr_mts_prod_img

^ That book is really good. It starts with linear algebra topics and moves into functional analysis.

u/TheAntiRudin · 2 pointsr/math
u/captainmeanyface · 2 pointsr/learnmath

Also, this book is a tough piece of work, for sure, but it's very helpful. It probably goes deeper than your class will, and may present ideas/methods in a different way, but if you grapple w/ this one, it'll really help you figure out L.A.

u/[deleted] · 1 pointr/math

I realize you're asking for free online resources, but especially in math, I've found that there's no better way to learn stuff than getting a book, reading through it and working problems. A quick Amazon search yielded Shilov's book on the subject which has used copies in the $5-$10 range. This is how I've been teaching myself complex analysis and abstract algebra, albeit with different books.

u/StudentRadical · 1 pointr/math

I meant it quite literally, something along the lines Linear Algebra by Georgi E. Shilov, but less rigorous.

u/bwbeer · 1 pointr/math

I bought a copy of Dover's Linear Algebra (Border's Blowout) which I plan to go through after I finish A Book of Abstract Algebra.

I feel like I have a long way to go to get anywhere. :S

u/Rocko52 · 1 pointr/math

Hello! I'm interested in trying to cultivate a better understanding/interest/mastery of mathematics for myself. For some context:

 




To be frank, Math has always been my least favorite subject. I do love learning, and my primary interests are Animation, Literature, History, Philosophy, Politics, Ecology & Biology. (I'm a Digital Media Major with an Evolutionary Biology minor) Throughout highschool I started off in the "honors" section with Algebra I, Geometry, and Algebra II. (Although, it was a small school, most of the really "excelling" students either doubled up with Geometry early on or qualified to skip Algebra I, meaning that most of the students I was around - as per Honors English, Bio, etc - were taking Math courses a grade ahead of me, taking Algebra II while I took Geometry, Pre-Calc while I took Algebra II, and AP/BC Calc/Calc I while I took Pre-Calc)

By my senior year though, I took a level down, and took Pre-Calculus in the "advanced" level. Not the lowest, that would be "College Prep," (man, Honors, Advanced, and College Prep - those are some really condescending names lol - of course in Junior & Senior year the APs open up, so all the kids who were in Honors went on to APs, and Honors became a bit lower in standard from that point on) but since I had never been doing great in Math I decided to take it a bit easier as I focused on other things.

So my point is, throughout High School I never really grappled with Math outside of necessity for completing courses, I never did all that well (I mean, grade-wise I was fine, Cs, Bs and occasional As) and pretty much forgot much of it after I needed to.

Currently I'm a sophmore in University. For my first year I kinda skirted around taking Math, since I had never done that well & hadn't enjoyed it much, so I wound up taking Statistics second semester of freshman year. I did okay, I got a C+ which is one of my worse grades, but considering my skills in the subject was acceptable. My professor was well-meaning and helpful outside of classes, but she had a very thick accent & I was very distracted for much of that semester.

Now this semester I'm taking Applied Finite Mathematics, and am doing alright. Much of the content so far has been a retread, but that's fine for me since I forgot most of the stuff & the presentation is far better this time, it's sinking in quite a bit easier. So far we've been going over the basics of Set Theory, Probability, Permutations, and some other stuff - kinda slowly tbh.

 




Well that was quite a bit of a preamble, tl;dr I was never all that good at or interested in math. However, I want to foster a healthier engagement with mathematics and so far have found entrance points of interest in discussions on the history and philosophy of mathematics. I think I could come to a better understanding and maybe even appreciation for math if I studied it on my own in some fashion.

So I've been looking into it, and I see that Dover publishes quite a range of affordable, slightly old math textbooks. Now, considering my background, (I am probably quite rusty but somewhat secure in Elementary Algebra, and to be honest I would not trust anything I could vaguely remember from 2 years ago in "Advanced" Pre-Calculus) what would be a good book to try and read/practice with/work through to make math 1) more approachable to me, 2) get a better and more rewarding understanding by attacking the stuff on my own, and/or 3) broaden my knowledge and ability in various math subjects?

Here are some interesting ones I've found via cursory search, I've so far just been looking at Dover's selections but feel free to recommend other stuff, just keep in mind I'd have to keep a rather small budget, especially since this is really on the side (considering my course of study, I really won't have to take any more math courses):
Prelude to Mathematics
A Book of Set Theory - More relevant to my current course & have heard good things about it
Linear Algebra
Number Theory
A Book of Abstract Algebra
Basic Algebra I
Calculus: An Intuitive and Physical Approach
Probability Theory: A Concise Course
A Course on Group Theory
Elementary Functional Analysis