Reddit Reddit reviews Topology (2nd Edition)

We found 24 Reddit comments about Topology (2nd Edition). Here are the top ones, ranked by their Reddit score.

Science & Math
Books
Mathematics
Topology
Geometry & Topology
Topology (2nd Edition)
Check price on Amazon

24 Reddit comments about Topology (2nd Edition):

u/farmerje · 88 pointsr/math

The answer is "virtually all of mathematics." :D

Although lots of math degrees are fairly linear, calculus is really the first big branch point for your learning. Broadly speaking, the three main pillars of contemporary mathematics are:

  1. Analysis
  2. Algebra
  3. Topology

    You might also think of these as the three main "mathematical mindsets" — mathematicians often talk about "thinking like an algebraist" and so on.

    Calculus is the first tiny sliver of analysis and Spivak's Calculus is IMO the best introduction to calculus-as-analysis out there. If you thought Spivak's textbook was amazing, well, that's bread-n-butter analysis. I always thought of Spivak as "one-dimensional analysis" rather than calculus.

    Spivak also introduces a bit of algebra, BTW. The first few chapters are really about abstract algebra and you might notice they feel very different from the latter chapters, especially after he introduces the least-upper-bound property. Spivak's "properties of numbers" (P1-P9) are actually the 9 axioms which define an algebraic object called a field. So if you thought those first few chapters were a lot of fun, well, that's algebra!

    There isn't that much topology in Spivak, although I'm sure he hides some topology exercises throughout the book. Topology is sometimes called the study of "shape" and is where our most general notions of "continuous function" and "open set" live.

    Here are my recommendations.

    Analysis If you want to keep learning analysis, check out Introductory Real Analysis by Kolmogorov & Fomin, Principles of Mathematical Analysis by Rudin, and/or Advanced Calculus of Several Variables by Edwards.

    Algebra If you want to check out abstract algebra, check out Dummit & Foote's Abstract Algebra and/or Pinter's A Book of Abstract Algebra.

    Topology There's really only one thing to recommend here and that's Topology by Munkres.

    If you're a high-school student who has read through Spivak in your own, you should be fine with any of these books. These are exactly the books you'd get in a more advanced undergraduate mathematics degree.

    I might also check out the Chicago undergraduate mathematics bibliography, which contains all my recommendations above and more. I disagree with their elementary/intermediate/advanced categorization in many cases, e.g., Rudin's Principles of Mathematical Analysis is categorized as "elementary" but it's only "elementary" if your idea of doing math is pursuing a PhD. Baby Rudin (as it's called) is to first-year graduate analysis as Spivak is to first-year undergraduate calculus — Rudin says as much right in the introduction.
u/Lhopital_rules · 64 pointsr/AskScienceDiscussion

Here's my rough list of textbook recommendations. There are a ton of Dover paperbacks that I didn't put on here, since they're not as widely used, but they are really great and really cheap.

Amazon search for Dover Books on mathematics

There's also this great list of undergraduate books in math that has become sort of famous: https://www.ocf.berkeley.edu/~abhishek/chicmath.htm

Pre-Calculus / Problem-Solving

u/[deleted] · 24 pointsr/math

I was in the same position as you in high school (and am finishing my math major this semester). Calculus is not "math" in the sense you're referring to it, which is pure mathematics, without application, just theory and logic. Calculus, as it is taught in high school, is taught as a tool, not as a theory. It is boring, tedious, and has no aesthetic appeal because it is largely taught as rote memorization.

Don't let this bad experience kill your enthusiasm. I'm not sure what specifically to recommend to you to perk your enthusiasm, but what I did in high school was just click around Wikipedia entries. A lot of them are written in layman enough terms to give you a glimpse and you inspire your interest. For example, I remember being intrigued by the Fibonacci series and how, regardless of the starting terms, the ratio between the (n-1)th and nth terms approaches the golden ratio; maybe look at the proof of that to get an idea of what math is beyond high school calculus. I remember the Riemann hypothesis was something that intrigued me, as well as Fermat's Last Theorem, which was finally proved in the 90s by Andrew Wiles (~350 years after Fermat suggested the theorem). (Note: you won't be able to understand the math behind either, but, again, you can get a glimpse of what math is and find a direction you'd like to work in).

Another thing that I wish someone had told me when I was in your position is that there is a lot of legwork to do before you start reaching the level of mathematics that is truly aesthetically appealing. Mathematics, being purely based on logic, requires very stringent fundamental definitions and techniques to be developed first, and early. Take a look at axiomatic set theory as an example of this. Axiomatic set theory may bore you, or it may become one of your interests. The concept and definition of a set is the foundation for mathematics, but even something that seems as simple as this (at first glance) is difficult to do. Take a look at Russell's paradox. Incidentally, that is another subject that captured my interest before college. (Another is Godel's incompleteness theorem, again, beyond your or my understanding at the moment, but so interesting!)

In brief, accept that math is taught terribly in high school, grunt through the semester, and try to read farther ahead, on your own time, to kindle further interest.

As an undergrad, I don't believe I yet have the hindsight to recommend good books for an aspiring math major (there are plenty of more knowledgeable and experienced Redditors who could do that for you), but here is a list of topics that are required for my undergrad math degree, with links to the books that my school uses:

  • elementary real analysis
  • linear algebra
  • differential equations
  • abstract algebra

    And a couple electives:

  • topology
  • graph theory

    And a couple books I invested in that are more advanced than the undergrad level, which I am working through and enjoy:

  • abstract algebra
  • topology

    Lastly, if you don't want to spend hundreds of dollars on books that you might not end up using in college, take a look at Dover publications (just search "Dover" on Amazon). They tend to publish good books in paperback for very cheap ($5-$20, sometimes up to $40 but not often) that I read on my own time while trying to bear high school calculus. They are still on my shelf and still get use.
u/anastas · 22 pointsr/askscience

My main hobby is reading textbooks, so I decided to go beyond the scope of the question posed. I took a look at what I have on my shelves in order to recommend particularly good or standard books that I think could characterize large portions of an undergraduate degree and perhaps the beginnings of a graduate degree in the main fields that interest me, plus some personal favorites.

Neuroscience: Theoretical Neuroscience is a good book for the field of that name, though it does require background knowledge in neuroscience (for which, as others mentioned, Kandel's text is excellent, not to mention that it alone can cover the majority of an undergraduate degree in neuroscience if corequisite classes such as biology and chemistry are momentarily ignored) and in differential equations. Neurobiology of Learning and Memory and Cognitive Neuroscience and Neuropsychology were used in my classes on cognition and learning/memory and I enjoyed both; though they tend to choose breadth over depth, all references are research papers and thus one can easily choose to go more in depth in any relevant topics by consulting these books' bibliographies.

General chemistry, organic chemistry/synthesis: I liked Linus Pauling's General Chemistry more than whatever my school gave us for general chemistry. I liked this undergraduate organic chemistry book, though I should say that I have little exposure to other organic chemistry books, and I found Protective Groups in Organic Synthesis to be very informative and useful. Unfortunately, I didn't have time to take instrumental/analytical/inorganic/physical chemistry and so have no idea what to recommend there.

Biochemistry: Lehninger is the standard text, though it's rather expensive. I have limited exposure here.

Mathematics: When I was younger (i.e. before having learned calculus), I found the four-volume The World of Mathematics great for introducing me to a lot of new concepts and branches of mathematics and for inspiring interest; I would strongly recommend this collection to anyone interested in mathematics and especially to people considering choosing to major in math as an undergrad. I found the trio of Spivak's Calculus (which Amazon says is now unfortunately out of print), Stewart's Calculus (standard text), and Kline's Calculus: An Intuitive and Physical Approach to be a good combination of rigor, practical application, and physical intuition, respectively, for calculus. My school used Marsden and Hoffman's Elementary Classical Analysis for introductory analysis (which is the field that develops and proves the calculus taught in high school), but I liked Rudin's Principles of Mathematical Analysis (nicknamed "Baby Rudin") better. I haven't worked my way though Munkres' Topology yet, but it's great so far and is often recommended as a standard beginning toplogy text. I haven't found books on differential equations or on linear algebra that I've really liked. I randomly came across Quine's Set Theory and its Logic, which I thought was an excellent introduction to set theory. Russell and Whitehead's Principia Mathematica is a very famous text, but I haven't gotten hold of a copy yet. Lang's Algebra is an excellent abstract algebra textbook, though it's rather sophisticated and I've gotten through only a small portion of it as I don't plan on getting a PhD in that subject.

Computer Science: For artificial intelligence and related areas, Russell and Norvig's Artificial Intelligence: A Modern Approach's text is a standard and good text, and I also liked Introduction to Information Retrieval (which is available online by chapter and entirely). For processor design, I found Computer Organization and Design to be a good introduction. I don't have any recommendations for specific programming languages as I find self-teaching to be most important there, nor do I know of any data structures books that I found to be memorable (not that I've really looked, given the wealth of information online). Knuth's The Art of Computer Programming is considered to be a gold standard text for algorithms, but I haven't secured a copy yet.

Physics: For basic undergraduate physics (mechanics, e&m, and a smattering of other subjects), I liked Fundamentals of Physics. I liked Rindler's Essential Relativity and Messiah's Quantum Mechanics much better than whatever books my school used. I appreciated the exposition and style of Rindler's text. I understand that some of the later chapters of Messiah's text are now obsolete, but the rest of the book is good enough for you to not need to reference many other books. I have little exposure to books on other areas of physics and am sure that there are many others in this subreddit that can give excellent recommendations.

Other: I liked Early Theories of the Universe to be good light historical reading. I also think that everyone should read Kuhn's The Structure of Scientific Revolutions.

u/functor7 · 20 pointsr/math

Munkres' book is the standard intro to topology. If you have no experience in it at all, it has a good intro to most everything you'll need to know in Point-Set Topology and the second part is a fairly intuitive intro to Algebraic Topology. Once you are familiar with Point-Set Topology, you can also learn from Hatcher.

The most important thing is to do the problems, you'll just be another buzzword-filled physics student if you don't prove anything.

u/urish · 9 pointsr/math

The standard textbook, which doesn't require much background (just calculus and a bit of set theory) is Topology by James R. Munkres.
Topology stands at the base of many mathematical subjects, but I don't know of many real world applications of general topology per se. Algebraic topology and knot theory have applications in biology, astronomy and I'm sure plenty else.

u/mian2zi3 · 8 pointsr/math

We need to make a few definitions.

A group is a set G together with a pair of functions: composition GxG -> G and inverse G -> G, satisfying certain properties, as I'm sure you know.

A topological group is a group G which is also a topological space and such that the composition and inverse functions are continuous. It makes sense to ask if a topological group for example is connected. Every group is a topological group with the discrete topology, but in general there is no way to assign an interesting (whatever that means) topology to a group. The topology is extra information that comes with a topological group.

A Lie group is more than a topological group. A Lie group is a group G that is also a smooth manifold and such that the composition and inverse are smooth functions (between manifolds).

In the same way that O(n) is the set of matrices which fix the standard Euclidean metric on R^n, the Lorentz group O(3,1) is the set of invertible 4x4 matrices which fix the Minkowski metric on R^4. The Lorentz group inherits a natural topology from the set of all 4x4 matrices which is homeomorphic to R^16. It is some more work to show that the Lorentz group in fact smooth, that is, a Lie group.

It is easy to see the Lorentz group is not connected: it contains orientation preserving (det 1) matrices and orientation reversing (det -1) matrices. All elements are invertible (det nonzero), so the preimage of R+ and R- under the determinant are disjoint connected components of the Lorentz group.

There are lots of references. Munkres Topology has a section on topological groups. Stillwell's Naive Lie Theory seems like a great undergraduate introduction to basic Lie groups, although he restricts to matrix Lie groups and does not discuss manifolds. To really make sense of Lie theory, you also need to understand smooth manifolds. Lee's excellent Introduction to Smooth Manifolds is an outstanding introduction to both. There are lots of other good books out there, but this should be enough to get you started.

u/ccondon · 8 pointsr/math

The standard/classic intro undergrad textbook is Munkres.

I actually never took a proper Topology course, I've just been forced to pick up a lot of it along the way. This book has been helpful for that. It's very friendly for reading/self-study.

If you don't want to buy a $60 book, I'm sure you can find it online somewhere, though I learn a lot better when trying to teach myself from a book I can easily flip through rather than a pdf in any form.

u/mnkyman · 8 pointsr/math

The classic textbook for a first course in topology is Topology by Munkres. It's a very good book.

Michael Starbird offers his topology "book" free of charge on his website. Here's the link. It's really closer to lecture notes for the course, and it's intended for an inquiry-based learning (IBL) course. What this means is that all of the proofs are omitted. The reader is expected to prove each result themselves. This obviously works much better in a group setting.

If you see any book titled "algebraic topology," I would recommend you ignore it for now. Algebraic topology courses assume you've at least had the one semester course in point-set topology (i.e. the books I linked) and one or two semesters in abstract algebra.

u/InfanticideAquifer · 7 pointsr/math

Anti-disclaimer: I do have personal experience with all the below books.

I really enjoyed Lee for Riemannian geometry, which is highly related to the Lorentzian geometry of GR. I've also heard good things about Do Carmo.

It might be advantageous to look at differential topology before differential geometry (though for your goal, it is probably not necessary). I really really liked Guillemin and Pollack. Another book by Lee is also very good.

If you really want to dig into the fundamentals, it might be worthwhile to look at a topology textbook too. Munkres is the standard. I also enjoyed Gamelin and Greene, a Dover book (cheap!). I though that the introduction to the topology of R^n in the beginning of Bartle was good to have gone through first.

I'm concerned that I don't see linear algebra in your course list. There's a saying "Linear algebra is what separates Mathematicians from everyone else" or something like that. Differential geometry is, in large part, about tensor fields on manifolds, and these are studied by looking at them as elements of a vector space, so I'd say that linear algebra is something you should get comfortable with before proceeding. (It's also great to study it before taking quantum.) I can't really recommend a great book from personal experience here; I learned from poor ones :( .

Also, there are physics GR books that contain semi-rigorous introductions to differential geometry, even if these sections are skipped over in the actual class. Carroll is such a book. If you read the introductory chapter and appendices, you'll know a lot. On the differential topology side of things, there's Schutz, which is a great book for breadth but is pretty material dense. Schwarz and Schwarz is a really good higher level intro to special relativity that introduces the mathematical machinery of GR, but sticks to flat spaces.

Finally, once you have reached the mountain top, there's Hawking and Ellis, the ultimate pinnacle of gravity textbooks. This one doesn't really fall under the anti-disclaimer from above; it sits on my shelf to impress people.

u/maruahm · 7 pointsr/compsci

I don't see why you couldn't start with the standard graduate math text on topology, Munkres. If you have the formal maturity to do proofs, you can just start here. Analysis and abstract algebra not necessary.

There's also Zomorodian, which I wouldn't consider a complete introduction to topology in a mathematical sense, but the intended audience here is exactly you. YMMV.

u/stackrel · 6 pointsr/math

I don't think you'll "spoil" what you'll learn later. If anything, seeing the material before will help you understand cooler stuff during the class next year. There's a lot of remarks and subtle examples I missed the first time I went through the standard undergrad math topics, that I only learned later.

But if you still want to avoid the topics you'll see in class, you could try some point-set topology (e.g. Munkres Topology). It would be beneficial for the real analysis class too. For differential geometry, I'd recommend Jänich Vector Analysis, which says it only needs calculus and linear algebra as prereqs.

u/dwf · 4 pointsr/math

There's really no easy way to do it without getting yourself "in the shit", in my opinion. Take a course on multivariate calculus/analysis, or else teach yourself. Work through the proofs in the exercises.

For a somewhat grounded and practical introduction I recommend Multivariable Mathematics: Linear Algebra, Calculus and Manifolds by Theo Shifrin. It's a great reference as well. If you want to dig in to the theoretical beauty, James Munkres' Analysis on Manifolds is a bit of an easier read than the classic Spivak text. Munkres also wrote a book on topology which is full of elegant stuff; topology is one of my favourite subjects in mathematics,

By the way, I also came to mathematics through the study of things like neural networks and probabilistic models. I finally took an advanced calculus course in my last two semesters of undergrad and realized what I'd been missing; I doubt I'd have been intellectually mature enough to tackle it much earlier, though.

u/a_bourne · 3 pointsr/math

My buddy (phd student) told me that if I were to do a reading course, or just want to do self study that I should use Munkres. I think you can find international editions for much cheaper than that. We were using Rudin for our analysis class and spent a lot of time on ch.2. These are my only suggestions because I haven't done much with topology or analysis.

u/origin415 · 3 pointsr/askscience

I love Jack Lee's series on manifolds:

Introduction to Topological Manifolds

Introduction to Smooth Manifolds

I've heard Munkres' Topology is fantastic as an introduction to general topology, but never read it myself.

u/tiedtoatree · 2 pointsr/IAmA

If you are enjoying your Calc 3 book, I highly recommend reading Topology, which provides the foundations of analysis and calculus. Two other books I would highly recommend to you would be Abstract Algebra and Introduction to Algorithms, though I suspect you're well aware of the latter.

u/flight_club · 2 pointsr/learnmath
u/Melchoir · 2 pointsr/math

If you want to earn credits towards an engineering degree, not that there's anything wrong with that: probability, statistics, multivariable calculus, differential equations, linear algebra

If you want to have fun and broaden your horizons: point-set topology (Munkres!), abstract algebra.

Find out which teacher(s) at your high school have mathematics degrees, and ask them for advice. Even if you want to study by yourself, see if you can work out an arrangement where they check your problem sets and give regular feedback. They may also be able to set up a seminar with like-minded students. And they will know what the local community colleges have to offer.

u/paris_f · 2 pointsr/math

My topology textbooks were Munkres, Hatcher, and Bredon.

u/Talamor · 1 pointr/ADHD

I wish I was only taking those two. I've also got Abstract Algebra II (Ring Theory), and teaching the one class on top of that. This is my "tough" semester. The next two I'll probably only be taking 2 classes each semester, plus teaching.

What book are you using for Topo? We're using Munkres.

And what are you using for Real Analysis? I know Baby Rudin is sort of the standard, but we're using Ross.

u/namesarenotimportant · 1 pointr/math

If you want to do more math in the same flavor as Apostol, you could move up to analysis with Tao's book or Rudin. Topology's slightly similar and you could use Munkres, the classic book for the subject. There's also abstract algebra, which is not at all like analysis. For that, Dummit and Foote is the standard. Pinter's book is a more gentle alternative. I can't really recommend more books since I'm not that far into math myself, but the Chicago math bibliography is a good resource for finding math books.

Edit: I should also mention Evan Chen's Infinite Napkin. It's a very condensed, free book that includes a lot of the topics I've mentioned above.

u/MyOverflow · 1 pointr/learnmath

I'm currently working through Munkres' book on Topology, and I am using the video lectures found here. I know these are in an annoying form factor, but, trust me, these are the only videos that go into any depth you will find on the internet. They use Munkres, too, which is a plus.

On the same site are video lectures for Algebraic Topology. For this, I definitely recommend buying Artin's "Algebra" (1st edition can be found cheaply, and I don't think there's really any significant difference from 2nd), and watch these video lectures by Harvard. Then, you can finally move on to the Algebraic Topology video lectures which uses the free textbook "Algebraic Topology" by Allen Hatcher.

Hope this helps.